Review & Usage of Lampert's Pulse Arc Welders
© Jeffrey Herman

Jeffrey Herman disclaims any responsibility or liability for damages or injuries as a result of   advice contained on this Web site.

 

Overview
(updated 12/24/2013)

Lampert Technical Papers
(updated 11/7/2014)

PUK04 Welder Settings
Download settings here
(updated 8/25/2014)

PUK Blog
(updated 11/3/2014)

Avoiding Pain When Welding for Long Periods
(updated 3/16/2014)

 

 

 

Overview

As any silversmith knows, silver solder is the ideal material to use when joining sterling pieces by the traditional method of brazing. Sometimes I will receive an object which has been lead-soldered in the area in need of repair (or re-repair). Sometimes the joined area is not visually accessible, and I don't know if lead has been used.

In either case, I cannot use silver solder because the high temperature required will melt any lead in the joint and allow it to form its own alloy with the silver. Not pretty! And, using a low temperature tin/silver solder won't give me a sound joint or good silver color. For this reason, I had been exploring newer technologies for joining metals. I tested laser welders from a few manufacturers, but found that their compartments are too small for working on holloware. In addition, they are expensive to buy and notoriously expensive to repair, and the down-time for repairs can be substantial. I also tested the Mini Pulse III (an arc welder) from Aelectronic Bonding, which had too few welding power options and didn't allow me to get into tight spaces.

I tested a friend's Lampert PUK2 pulse arc welder for a few months, and refined my technique to the point where I felt confident to purchase Lampert's PUK3s Professional, which was developed to weld silver more successfully. I was so impressed that I soon purchased the PUK3s Professional Plus which had a broader power range, additional impulse settings, and five programmable settings.


PUK 3s Professional


PUK 3s Professional Plus

Since I use the PUK on a daily basis, it was only natural to upgrade again to Lampert's latest model: the PUK04, which has the following advances over the previous models I've owned. Features in bold were the most important to me:

• Touch-screen programming.
• Smaller footprint;
Exclusive "soft start" pulse for even cleaner welds and less electrode tip embedment;
• Substantially less cracking when welding and using filler wire for an even stronger weld;
Minimum impulse setting: .5 milliseconds – critical for ultra-thin metal (the PUK 3s Plus: 3ms);
• 33 programmable settings (the PUK 3s Plus: 5);
• Three LED intensity settings.

PUK04

Above: As with every PUK I've owned, this latest model also sits to the right of my main bench where I can pivot left to get access to my abrasive and burnishing tools. I set up ventilating behind the welding area to capture all metal fumes. Venting or using the optional smoke absorber is a necessity, as with all other forms of welding which produce metal fumes.

The electrodes

The 10 electrodes come pre-sharpened on both ends. I wait until I have used all 10 electrodes (20 tips) before sharpening them at the same time with the supplied mandrelled diamond disk. This saves time. I mount the disk in my Foredom handpiece and secure it to the bench over the dust collecting vent. The recommended tip angle is 15%. Electrode replacement in the PUK handpiece can be accomplished within five seconds.

Advice on welding larger objects

Whether it be pulse arc or laser, welding isn't meant to substitute for brazing large objects. Welding long seams (e.g., on coffeepots or candlesticks) is more time-consuming than simply using the welder to tack a seam in preparation for brazing.

If attaching parts to large bearing surfaces (e.g., a large finial to a coffeepot cover), it's best to tack the part in place, then use the capillary action of torch-brazing to fill the void. Always consider the time it will take to weld or braze and the subsequent clean-up.

The handpiece can be removed in three seconds for welding freehand.


PUK04

Lampert pulse arc welder highlights

Uses the same alloy as the piece being created or repaired (no color issues as with solder);
Tacking eliminates the shifting of joints and the time involved in wiring-up an object;
Repair objects without harm to stones or patinas;
Attach findings without losing metal hardness;
Work on material as this as .001";
No firescale or firestain due of argon protective atmosphere;
Localized heat won't melt nearby joints or damage stones;
Fill in porosity with the same alloy;
Simple and intuitive to operate;
Certified product safety: GS & CE marks;
DIN CERTCO certified eye protection in the microscope lens;
Maintenance-free;
Small footprint - fits into every workshop;
Very low cost of consumer materials (electrodes);
Extremely low argon consumption compared to other systems (I use only 1.5 lpm);
Touch-screen operation;
Easy-on, easy-off handpiece nozzle when changing electrodes;
Built in Germany with attention to the minutest detail - you can see and feel the quality;
3-year warranty!

Lampert Workshop Papers (Subcribe to their workshop series here.)
NOTE: PUK3 settings: #1-16     PUK04 settings: #17-28

28 Using masking tape

http://www.lampert.info/nl/workshop/Lampert_workshop_28.e.pdf

27 Repair of aluminum

http://www.lampert.info/nl/workshop/Lampert_workshop_27.e.pdf

26 Repairs on hollow jewelry

http://www.lampert.info/nl/workshop/Lampert_workshop_26.e.pdf

25 Removal of engraving

http://www.lampert.info/nl/workshop/Lampert_workshop_25.e.pdf

24 Strengething prongs

http://www.lampert.info/nl/workshop/Lampert_workshop_24.e.pdf

23 Contact tools

http://www.lampert.info/nl/workshop/Lampert_workshop_23.e.pdf

22 PIN module

http://www.lampert.info/nl/workshop/Lampert_workshop_22.e.pdf

21 Findings

http://www.lampert.info/nl/workshop/Lampert_workshop_21.e.pdf

20 Repairing a bracelet

http://www.lampert.info/nl/workshop/Lampert_workshop_20.e.pdf

19 Cuff links

http://www.lampert.info/nl/workshop/Lampert_workshop_19.e.pdf

18 Designing a basket setting

http://www.lampert.info/nl/workshop/Lampert_workshop_18.e.pdf

17 Repairing prongs & bezels

http://www.lampert.info/nl/workshop/Lampert_workshop_17.e.pdf

16 Ring with bezel setting

http://www.lampert.info/nl/workshop/Lampert_workshop_16.e.pdf

15 Impulse times

http://www.lampert.info/nl/workshop/Lampert_workshop_15.e.pdf

14 Protective gas

http://www.lampert.info/nl/workshop/Lampert_workshop_14.e.pdf

13 Joints and seams

http://www.lampert.info/nl/workshop/Lampert_workshop_13.e.pdf

12 Welding pores

http://www.lampert.info/nl/workshop/Lampert_workshop_12.e.pdf

11 Costume jewelery

http://www.lampert.info/nl/workshop/Lampert_workshop_11.e.pdf

10 Silver

http://www.lampert.info/nl/workshop/Lampert_workshop_10.e.pdf

9 PUK3 introduction

http://www.lampert.info/nl/workshop/Lampert_workshop_09.e.pdf

8 Tacking bezels

http://www.lampert.info/nl/workshop/Lampert_workshop_08.e.pdf

7 Tacking techniques

http://www.lampert.info/nl/workshop/Lampert_workshop_07.e.pdf

6 Wires and prongs

http://www.lampert.info/nl/workshop/Lampert_workshop_06.e.pdf

5 Ring-sizing

http://www.lampert.info/nl/workshop/Lampert_workshop_05.e.pdf

4 Welding a loop

http://www.lampert.info/nl/workshop/Lampert_workshop_04.e.pdf

3 Welding an ear post

http://www.lampert.info/nl/workshop/Lampert_workshop_03.e.pdf

2 Adding metal

http://www.lampert.info/nl/workshop/Lampert_workshop_02.e.pdf

1 The PUK principle

http://www.lampert.info/nl/workshop/Lampert_workshop_01.e.pdf

Lampert Workshop Videos: http://www.youtube.com/user/LampertWelding/

Unit cost

The basic cost for the PUK04 is $5,295. It includes:

• PUK unit and microscope;
• Three different contacts (pliers, locking tweezers, and alligator clip) for attaching to your work; 
• Handpiece; 
• Welding mat;
• Microscope cover; 
• 10 thorium-free electrodes with diamond disk sharpener;
• Metal compactor;
• Brass brush to remove any oxides or soot that may form on the piece you're welding. This will free-up your flexshaft for other accessories.

WARNING! Shaded safety glasses and goggles made for oxy-acetylene brazing and welding are NOT intended for arc welding. The flash that's produced when arc welding is much more intense and requires the auto-darkening function found on PUK pulse arc welding microscopes and magnifiers.

Optional accessories I added:

Though it's certainly not the most user-friendly microscope arm on the market, Lampert's articulating arm ($575) allows me to work on larger objects underneath the microscope. See it in use here.

A note about this arm: Purchase it only if you're going to be working on large objects as it's not user-friendly: it's difficult to raise and lower on the rear vertical shaft; the adjustable wire vertical support towards the front of the arm is too thin; and the arm itself is very heavy and cumbersome. Hopefully, in the near future, Lampert will develop a more useful arm.

 

The precision regulator ($135).

When I was using the PUK 2, I tried a couple of different (and less expensive) argon regulators that weren't nearly as accurate as the one from Lampert. Most argon regulators are made in China and have graduated indicators that are too close together and/or have poor adjustment sensitivity, and very poorly made (I returned two regulators before springing for the Lampert model). A regulator that doesn't give accurate readings can lead to poor welds and wasted gas. The PUK regulator is very well made and has more widely-spaced indicators to better indicate exactly how many liters per minute of gas is flowing. Though it's priced at $135, it's a wise investment in German quality.

Argon gas, which protects the weld from developing oxides, is the other expense for running the PUK. Without gas, the PUK won't run (and you would never produce a successful weld without it, regardless of your chosen welding apparatus). To reduce the cost of argon, I would advise leasing a 300-cubic-foot cylinder (5' tall x 10" diameter). I'm paying $142.81 per refill (includes hazmat & state tax) plus $50 for the yearly lease. Argon purity of at least 99.97% is recommended by Lampert. The industrial argon I'm using from my local Airgas company is 99.998% pure. I have been running the PUK on 1.5 liters of argon per minute regardless of the alloy I'm working with.

The headrest
* Available on PUK04 models manufactured BEFORE May 2013) $65.
* Available on PUK04 models manufactured AFTER May 2013) $77.

The PUK04 headrest allows relaxed and fatigue-free working with the welding microscope. It also helps maintain concentration on the workpiece and eliminates fogging and the deposit of eyelash oils on the microscope lens.

Additional electrodes – each set supplied with a diamond grinder and case ($45). See electrode sharpening here.

 

Additional optional accessories

 


 

1. Pin module for welding ear studs
2. Welding wires
3. Magnifying lens
4. Third hand
5. Welding smoke absorber (highly recommended if you have no localized ventilation)
6. Foot pedal

Welding Wire Alloys

Rio Grande has an excellent selection. Below is a partial list:
Sterling / Argentium Sterling / 14 Yellow Gold / 18 K Yellow Gold / Platinum

Definitely purchase a Speedwire Welding Wire Dispenser (not a Lampert product).

Welding wire spooled in containers like the ones above make it difficult and time consuming to steady thin wire exactly where you want it (it tends to flop around). The Speedwire Welding Wire Dispenser makes thin wire much easier to weld since it puts it exactly where you want it – without movement. Speedwire allows wire as this as .005" (.127mm) to be dispensed, though, you'll probably be using the more widely available .010" (.25mm) wire. I bought the refillable Speedwire ($23) and coil the sterling wire myself on steel rod in my lathe, then relax the coil by removing the wrapped rod from the lathe and gently annealing it while still attached. Speedwire can also be supplied with pre-installed wire of numerous precious metal alloys. See the Speedwire in use here. For more information and purchasing from the inventor, go here. Speedwire can also be purchased from: Hoover & Strong, Rio Grande, Stuller, among others.

 

Conclusion

Using this relatively new technology has broadened my scope of options when joining metals. I can mend a pinhole with a dollop of sterling, dress it down, and give it a quick polish without disturbing the patina. The end result: absolutely no indication the piece was repaired - the color is perfect! I can repair a bezel surrounding a piece of glass without removing it. Normally I would be forced to unmount the glass, possibly damaging it in the process. I even used the PUK to weld a steel wire to the end of a hardened steel pin that was buried in a candelabra stem. I heated the stem, melting the lead solder, and pulled the pin out. How slick is that?

When I say I use the PUK every day I'm working, I'm not exaggerating. It was the most prudent (and expensive) purchase I've ever made for my shop, but it's already paid for itself. Once you own this little gem, it will open a whole new world of possibilities. Oh, another plus: Lampert Tools USA offers up to five hours of free training when you purchase a PUK welder. Simply contact owner and goldsmith Robert Sepiashvili in Chicago to make an appointment.

Overall rating

Lampert PUK04: (excellent)

Additional information

Lampert's Web site (Germany)

Distributor

Lampert Tools USA
Robert Sepiashvili
67 East Madison #512
Chicago, IL 60603
866/4PU-K111 (866/478-5111)

Technical Support

Lampert Tools USA
Robert Sepiashvili
67 East Madison #512
Chicago, IL 60603
866/4PU-K111 (866/478-5111)

Suppliers

USA

A&A Jewelry Tool (Los Angeles, CA)
BTI/Landa (Miami, FL)
Gesswein (Bridgeport, CT)
Kassoy (New York, NY)
Otto Frei (San Francisco, CA)
Rio Grande (Albuquerque, NM)
SEP Jewelry Tools (Chicago, IL)
Uptown Material House (New York, NY)

Canada

Lacy West Supplies (Vancouver, Canada)
Nobel Packaging (Montreal, Canada)


PUK04 Welder Settings (Download settings here.)
Revised 4/11/2014
The below settings have worked successfully on numerous pieces I have worked on in my workshop. They should be used as guidelines only. MS = Milliseconds

Welding Sterling (updated 4/9/2014)
w/Sterling Filler Wire (.010"/.25mm) 

MS
1.5
1.5
2
3

Mode
Sterling (Thick)
Sterling (Thick)
Sterling (Thick)
Sterling (Thick)

Power
26%
45%
50%
50%

Deposit
Very Light
Light
Medium (I personally use this setting most often.)
Heavy

 s

Welding Sterling
w/Sterling Filler Wire (.005"/.127mm - .010"/.25mm) 

MS
.5
1

Mode
Sterling (Thick)
Sterling (Thick)

Power
22%
30%

Object Thickness
.001 - .003 (.025 - .076mm)
.004 - .025 (.102 - .635mm)

  s

Welding Sterling (updated 4/9/2014)
w/Sterling Filler Wire (.020"/.51mm)

MS
3
5
9
16

Mode
Sterling (Thick)
Sterling (Thick)
Sterling (Thick)
Sterling (Thick)

Power
55%
60%
65%
65%

Deposit
Very Light
Light
Medium (Warning: burn hazard - hold with insulated pliers.)
Heavy (Warning: burn hazard - hold with insulated pliers.)

 s

Welding Sterling (for depositing filler wire on an extreme angle)
w/Sterling Filler Wire (.010"/.25mm)

MS
1

Mode
Sterling (Thick)

Power
30%

Electrode Tip
Sharp

 s

Welding Sterling (that has been plated with fine silver)
w/Sterling Filler Wire (.010"/.25mm)

MS
1.5

Mode
2 (Expert)

Power
45%

Deposit
Medium

  

Welding Sterling
w/Palladium/Silver Filler Wire (.010"/.25mm) 

MS
3

Mode
Sterling (Thick)

Power
50%

Deposit
Medium

  s

Welding 14K Yellow Gold
w/14K Yellow Gold Filler Wire (.010"/.25mm)

MS
1.5

Mode
Gold (Thick)

Power
45%

Deposit
Medium

 s

Welding Copper
w/Copper Filler Wire (.010"/.25mm) Below settings are guideline as there are many copper alloys.

MS
3
3

Mode
8 (Expert)
8 (Expert)

Power
55%
65%

Electrode Tip
Sharp
Dull

  s

Welding Brass (updated 4/11/2014)
w/Brass Filler Wire (.010"/.25mm) Below settings are guideline as there are many brass alloys.

MS
2

Mode
Brass (Thick)

Power
50%

Deposit
Medium

 s

Welding White Metal
w/Pewter Filler Wire (cut thin strips from .010"/.25mm sheet stock)

MS

Mode

Power

Deposit

1.5

Sterling (Thick)

45%

Medium


PUK Blog

10/19/2014: Tool repair. Have you ever dropped a cast iron tool on a cement floor? I have. You cry a little then you reshape it. Or, you braze some brass rod or silver solder to rebuild the tool. Or, you can use your PUK! This cast iron spoon stake chipped when it fell on my cement floor. I used the stainless steel setting on the PUK and rebuilt the missing piece with some heavy mild steel wire, then reshaped the repaired area. (Shown is the welded area prior to finishing). There's no messy flux clean-up and you'll maintain the finish on the rest of your tool – no repolishing. If you have a very heavy T-stake with some porosity, welding will take much less time and without heating a large area with your torch.

10/19/2014: This money clip broke on its spine from too much stress. It was welded back together with palladium/silver wire and built up around the break, adding strength. Welding was the only practical option for this repair because of the inlaid stones. Because of the tension exerted on the spring, silver sheet was welded to the spine for extra support and tapered around the back for a more appealing appearance

8/25/2014: Welding Objects With Hard Fired Enamel

If you ever repaired an object containing enamel, you know how difficult it can be, especially if the object requires soldering. You can't use silver solder because of the danger of damaging the enamel. And lead solder won't give you a secure or attractive result, but that's the only method available in your workshop.

If you create or restore enameled objects, you may want to consider a pulse arc welder since the heat is so localized no harm will come to the enamel. This pot needed its handle secured and its dents removed from the single-walled body, double-walled cover, and removeable tea strainer that sits under the cover. There had been a rod extending through both ivory insulators. One end was hard soldered to the handle and the other was peined over on the inside of the pot. Over time, this assembly loosened. I removed both rods then welded new ones to the body, covering the holes. I then drilled holes through the handle for the rods to extend and countersunk the holes. After I reinstalled the insulators over the rods, I attached the handle with the rods protruding through the holes. I then pulsed down over the rods, spreading the silver into the countersinks and securing all parts for an undetectable repair (below).

7/25/2014: Welding Stress Cracks

One of the many strengths of pulse arc welding is the ability to correct mistakes. For instance: you're at the final stage of checking (thickening) the edge of a vase you just spent weeks raising and planishing. Suddenly you discover a stress crack that formed down the side of the piece because the metal became too hard. What do you normally do to repair the crack after you're done swearing? That's right, you solder it or start over with a new piece of metal. The problem is if you use solder, the color difference will stand out like a soar thumb. And this is where welding will save the day. You file a v-groove into the crack and use a wire of the same alloy as the piece itself and fill it in. You've not only saved hours of production time, you've corrected a mistake that will never be detected.

As a restoration specialist, I have been confronted numerous times with this issue. A bracelet or sugar tongs that were flexed so many times a crack developed. Or a spun bowl that wasn't properly annealed when made and cracked on its edge after hitting a tile floor. And that flimsy 18th century goblet that was torqued when hand polishing and cracks opened around its stem. It's very satisfying returning a piece to a customer knowing that a new technology produced a better result.

5/20/2014: Welding results in brittleness in sterling

Are you about to size a ring? Be aware that if you're filling the "V" you made with filler wire will be more brittle than the rest of the ring. And I'm using a ring shank only as an example. On a hardened shank,  pulse a couple of layers of sterling in the bottom of the "V" using 2-3ms, thick mode, and 50% power. Add a couple of layers of palladium/silver wire for a stronger connection to the shank and finish off with a thick layer of sterling for a perfect color match.If you find that after welding you have to size up a quarter to one half you should concentrate any hammer blows away from the weld. This will insure that the weld will not split.

4/11/2014

2/28/2014: Welding a snuffbox hinge knuckle

Three-knuckle hinges should be easy to make, right? So why do I constantly see them with the center knuckle smaller than the other two? Strange. That center tube MUST be longer than the others so it won't take added abuse.

This 2.75" sterling snuffbox is a case in point. That cover was torn from the hinge. Removing the tight hinge pin would have damaged the outsides of the outer two knuckles. This is where the PUK excels in its duties. Using a triangular graver, I dug a groove between the knuckle and cover on the top and underside. This allowed me to fuse more material between the two components. I wanted to duplicate what would have naturally occurred with silver solder's capillary action drawing the solder between the two components.  I fused one thick layer of palladium/silver into the crevices since this alloy would provide a stronger join than sterling. I finished by filling the rest of the crevasse with sterling for a perfect color match to the snuffbox. The images below show the deposited sterling prior to leveling the area.

Below is the polished underside of the cover/hinge connection.

1/31/2014: Welding over multiple alloys (silver, copper, and lead)

Below is a fused plate cover to a Matthew Boulton urn. Fused plate (commonly called Sheffield plate), was sterling sheet "sandwiching" a sheet of copper. This was the precursor to electroplating. In order for the cover and rim edges to be connected, a very thin piece of sterling sheet (evident in the image) was lead soldered to the edges, hiding the copper. If I used the same technique to close those edges, the remaining strip may have pulled away from the edge, so welding was the safest and most logical technique to use. I cleaned the area missing this thin sheet and proceeded to reconnect the cover and rim split with palladium/silver wire. It worked brilliantly, as illustrated below. I will top the filler with a heavy thickness of sterling for a perfect color match. This is just one more reason I enjoy using the PUK.

1/15/2014: This money clip developed a stress crack then broke from many years of use. It was welded back together with palladium/silver wire. Removing the coin could have damaged it and brazing the split would have softened the metal with no way to harden the overall clip. Because of the tension exerted on the spring, silver sheet was added to the spine for extra support.

12/27/2013: The PUK04 comes through again with a sensitive weld

This welder never ceases to amaze me! The perfume bottle top below (actual length 3") was originally a button hook. My customer wanted to use this hook in place of the missing top. I cut the hook and inserted a sterling ball over the rod, then welded it in place with sterling. Pretty straight forward, right? Well, not entirely. You see, the handle was filled with pitch, so the challenge was to weld the ball to the handle without any pitch melting and contaminating the joint. I used a very sharp electrode with a setting of 1ms, thick mode, and 35% power. The heat was so localized that the welding went along flawlessly!

11/1/2013: Excellent source for .010 (.25mm) dead soft sterling wire

Rio Grande – Rio also carries other metals in the same form as above.

10/5/2013: Electrode sharpening

We all have our own techniques when sharpening tools. Below is an image of me sharpening electrodes in a very safe manner. When it's time to sharpen my 80+ electrodes, I do so all at once. I cut a pipe hold-down so I would need only one screw to secure it to my bench over the inset 4" galvanized elbow that connects to my dust collector. I use the diamond sharpening wheel that comes in each package of PUK electrodes. Using very little pressure from my forefinger on my left hand, I quickly "twirl" two electrodes into (not away) the wheel with the thumb and middle fingers of my right hand. Since I'm primarily welding silver and using very little power, I grind relatively slim tapers. Though I have ground as many as four electrodes at once, grinding only two at a time will give you more uniform tips.

9/25/2013: Removal of solder and plating critical when welding

I mentioned in an earlier post regarding removing silver solder from a match safe before welding. Though palladium/silver wire may sometimes fill without removing solder, the absolute best and easiest welds are accomplished when solder is not present. Another issue is the presence of a coating over the main alloy, whether it's fine silver or rhodium covering sterling, gold over sterling, and especially lacquer. Always scrape, abrade, or chemically remove this surface in order to work successfully with the underlying alloy.

9/16/2013: Removing a hand mirror handle dent

Today I'm working on a sterling hand mirror which has it mirror-holding bezel lead soldered in place. So, how to remove a handle dent (the customer didn't want any other work done)? In this case, I drilled a hole in the bottom of the handle large enough to insert a burnisher to pop out the dent in the middle of the handle. I then pushed a no-hole sterling ball into the handle and had it drop to the handle bottom, tacking it in place. Below you'll see the ball totally welded in place before I add additional material and blend the handle into the ball.

7/12/2013: Burnishing over a cast iron head

On objects made of thinner material, it's always best to support the piece from underneath when burnishing so the area won't dent.

6/26/2013: Welding over firestain

Pulse arc welders don't like firestain; it sees it as an oddball alloy and won't react well with it, producing an unsuccessful weld. Remove all firestain from the welding area to expose the pure alloy prior to welding, otherwise, it will be akin to trying to solder over dirty metal.

6/10/2013: Filling in knife handle dents

Here I had a Georg Jensen sterling dinner knife that had been dented on its tip. It was no problem filling in with a .020" / .51mm wire. The resulting restoration is undetectable.

6/7/2013: Restoring internal threads

Yesterday I was working on a sterling candelabra that had a candle cup with its internal threads worn down. I used Lampert's palladium/silver wire to fill in the threads and retap the hole. This saved considerable time over brazing a wire into the hole, drilling, then tapping. The reason for using the palladium/silver was because the threads had been hardened from numerous times screwing and unscrewing the cup from its threaded rod. This alloy excels in fusing itself to hardened silver, more so than standard sterling. I then removed the stripped sterling rod from its arm (the bobeche disk is free-floating over the arm), drilled and tapped a hole, then screwed in a new threaded rod before welding it in place with the palladium/silver wire.

5/23/2013: The beauty of tacking

The silver creamer below illustrates just how easy and clean it is to get parts ready to braze or solder. A few pulses from the PUK will position the attachment without the fear of movement. No need to worry about binding wire melting or a third hand moving the piece out of place. Tacking this leg in a few spots took only 30 seconds.

4/12/2013: Engraving Cleaner

There are times when using a glass brush can be messy and even get in the way of a good weld. Plus, the tiny fibers can get lodged in your skin and can be very difficult to find. Today I made this engraving cleaner which will free-up your flexshaft for other accessories. The screw can be loosened and rotated to expose new material.

As with soldering, welding also requires a clean surface. This is especially true with engraving, which can be very deep. When I see oxide build-up (not soot), I reach for the cleaner. The cleaning will also aid in void-free welds.

4/5/2013: Filling Engraving

This rare Jensen piece shows its chased lettering filled with sterling (left). The image on the right shows the finished job. I used 2ms, thick mode, 50% power. The material on this tankard allowed me to use a more powerful pulse. Remember to always start with a less powerful setting so not to blast through the object.

4/2/2013: Filling Engraving

Below is the bottom of a stelring creamer – part of a five-piece teaset that had to have the monograms filled in. The material was too thin to eradicate, and the customer wanted a replacement monogram engraved. See more of monogram filling here.

Top left: I removed all oxide in the engraving with Wright's Silver Polish and a horsehair brush (a typical flux brush). It's best to start with a clean surface. I used silver polish since it's less abrasive than a glass brush or 0000 steel wool.

Top right: the engraving being over-filled with sterling wire (I used these settings: 2ms, thick mode, 50% power).

Bottom left: the monogram totally filled.

Bottom right: no trace of the monogram after planishing, abrading, and polishing.


3/10/2013: Flattening filler wire

On my PUK bench sits a small anvil for flattening my .010" / .25mm filler wire which comes out of my Speedwire dispenser. There are times when I need a thin piece of sheet to fill a narrow split.

3/9/2013: Skimming (my term)

There are times when you'll want to build a heavier thickness on top of what you're welding. Below is a weighted candlestick with the pitch still inside. Previous welds on this piece had not yet been refined, as I simply wanted to get all holes filled first.

I'm using a much heavier .020" / .51mm wire on the edge of <.005 / .127mm sterling. This is a fairly advanced technique, for you'll want to position the electrode on the edge of the wire, pushing a small amount onto the area beneath with a light setting. I'm using the thick sterling setting, 1ms, and 35% power. This would never be enough power to melt the entire wire, but will melt a portion of it. This technique is also allowing for a much thicker base to weld to without blowing through the thinner material beneath. Using a heavier wire will cover the hole much quicker than using .005" / .127mm, and will give me a much thicker base to add heavier amounts of silver. Later burnishing will also result in a smoother surface. Another plus in using thicker material will be found in argon savings.

Below: The filled hole

2/21/2013: Smoothing deposited metal

I discovered this technique yesterday which allows me to free-up my flexible shaft for welding accessories. This $20 Dremel electric engraver, with its 9 power settings, hammers down, massaging the metal while giving a beautiful smooth finish for light filing and sanding. I removed the engraver point, polished the other end, and reinstalled it. The engraver is very loud, so I wear earmuffs. I feel the deposited metal is much less traumatized than when working with many rotary burnishers which "pull" the metal instead of compressing it like a rolling mill.

The area in front of the deposited sterling was finished with a #4 pillar file then 1200-grit wet/dry paper, ready for polishing.

I will start searching for a quieter electric engraver.

2/20/2013: Cast iron/sterling welding

Yesterday I made a hanger for my grinding wheels' truing device. This is an example of successfully welding sterling to cast iron. It's not a pretty connection (I wasn't concerned with aesthetics), though the weld is extremely strong even though there is very little contact between both materials. I used the sterling mode with the thick preset. Periodically removing any soot from the welding area will guarantee a homogeneous meld between weld layers.


2/7/2013: Stainless welding

I did some stainless welding today with no filler wire. The blade in a dinner knife snapped off its tang. I removed the tang from the sterling handle, welded its circumference, and made it ready for reinsertion. If I had silver-soldered the two pieces back together, there most certainly would have been some etching to the blade from the flux. Cleaning of the tang and welding took all of three minutes!

1/8/2013: White metal welding

Up to now I've been demonstrating how fantastic the PUK is at welding silver. You may remember the successful test I performed on pewter. Yesterday I was straightening, leveling, and polishing a white metal sailing trophy. One additional repair was required: reattaching the ship's wheel. White metal generally melts below 300 F (149 C). Since there was a large gap that required filling where the wheel meets the handle, I used some higher temperature lead-free pewter which melts at approximately 450 F (232 C). I used the sterling setting with a time of 1.5ms, thick mode, 35% power. The pewter performed beautifully, filling the gap and leaving a brighter color than a traditional tin/lead solder. (I do no plating, so the pewter color was a great substitute for a silverplated finish. Plus, this was a repair, not a restoration project.) The pewter also gave me a considerably stronger join. Gently bending the wheel back and forth proved the welded areas were successful.

11/20/2012: Void-free welding

Below is an image of a piece of .040" (1.02mm) sterling sheet that was built-up to a thickness of .105" (2.67mm) using .020" (0.51mm) sterling wire. Notice the lack of voids do to successful melding of weld deposits. I used a setting of 2.5ms / thick mode / 45% power, pulsing over and around the sides of the wire. I then dropped the settings to 1.5ms / thick mode / 45% power, and placed the electrode at a 45-degree angle where the partially melted wire meets the sheet. This allowed the wire to puddle, melding with the sheet and leaving no voids. I then cut a cross-section with a sawblade and  finished the face with 2000-grit silicon carbide paper.

When building upon melted wire, make certain that there are no voids underneath, otherwise, the area  (when cut on a profile like the piece below), will look like a sponge and will not have structural integrity.

I welded two pieces of .040" (1.02mm) sterling sheet together with .020" (0.51mm) sterling wire, allowing voids (the dark areas of the weld) to develop in the process. I then split the seam by bending, demonstrating what can happen to a joint when not totally filled. Insufficient power was used when the electrode was positioned on top of the welding wire. The result was that portions of the underside of the welding wire didn't fuse to the sheet.

10/22/2012: Using brass wire wheels

When using a typical 3/4" brass wire wheel in a flexible shaft to remove soot and oxide build-up, use very little pressure and a slow speed. Not doing so may leave brass residue on the piece you're welding and will lead to an unsuccessful weld. Welding doesn't like the presence of an addition metal which isn't part of the alloy you're welding.

10/21/2012: Tools I use with the PUK

Front row, left to right...
Burnisher with slightly flat side, burnisher with slightly flat side, burnisher with slightly flat side, burnisher with three sides, burnisher with three sides, burnisher with three sides,

Back row, left to right...

PUK compactor (teeth removed, slightly flattened side), flexshaft mandrel with four sides (not pretty, but works well), 45-degree heart bur for cutting grooves, burnisher with slightly flat side, burnisher (top has a slight angle for "massaging" the welded surface), graver for cutting grooves

8/21/2012: Welding a Japanese waste bowl containing lead solder

This is a double-walled fine silver waste bowl that had many dents. The handles had disconnected from the rim because they were lead soldered. I had to disassemble the inner and outer bowls, remove the dents, reassemble with lead solder, repatinate, and hand polish.

I decided to make a stronger connection where the handles meet the rim, so I welded the dragon toes with sterling (silver soldering would have obviously melted the lead solder holding the two bowls together).

8/9/2012: Welding extremely thin sterling

Below is a close-up of a weighted candlestick. The customer didn't want a complete restoration, but to simply repair the stem-to-base connection without removing the dents. The candlestick material was only about .004" (.1mm) thick. I was able to weld the split closed with .010" (.25mm) sterling filler wire using the following settings:

Material: Sterling
Mode: Thick sheet (not gap mode)
Milliseconds: 1
Power: 30%

What's amazing is that I didn't have to empty the pitch to perform a successful repair. Upon completion of the weld, I remelted the pitch which filled in any voids around the repair.

7/26/2012: Protect alligator teeth from marring your work.

1. Grind down the jaw teeth
2. Anneal appropriate diameter brass or copper tubing
3. Force-fit tubing over jaws
4. Use round nose pliers to crimp new non-marring teeth
5. Roll over tips so they touch
6. Flatten and weld corners of tips
7. Slightly round tip corners
8. Polish tips

7/19/2012: Wallace Sterling Golf Trophy – working large

Filling in dents and welding cracks. I have the trophy sitting on a rolling pneumatic table that can be height-adjusted. I constructed the table out of an old office chair, removing the seat and replacing it with a piece of plywood.

6/272012: 10" Tiffany Sterling Plate

This plate came to me with chased lettering that the customer wanted removed and the overall look brought back to its original beauty. This job was going to very complex. The lower parts of the lettering were very thin as it was chased on a steel form, and the slightly rounded corners would be more difficult to level with the overall disk. These factors required numerous setting adjustments on the PUK.

Above, I'm flattening the over-filled sterling mounds with a special smoothing mode. This entire filling and smoothing process was extremely time-consuming, requiring enormous concentration and constant refocusing of the 10x microscope.

The lettering completely filled.

The deposited sterling was then planished over a slightly domed stake to remove any porosity left by the welding. Then, 600-, 1200-, and 2000-grit silicon carbide wet/dry paper was used to remove any high spots and prepare the surface for polishing.

The center disk shows no sign of ever having been chased.

The plate was repatinated and lightly polished, resulting in a dramatic transformation. The entire restoration took over 14 hours!

5/30/2012: Sterling Kiddush Cup

This Kiddush cup was made from very thin material. I reshaped the torn area which extended 3/4 of the way around the stem. I then brought together both sides of the split and welded them together. All voids were filled by welding with sterling wire for a perfect color match. I straightened the stem and leveled the bottom and top rims. I then removed the dried polish and performed a very light hand polishing.

5/10/2012: Welding Objects That Flex
I often receive broken sterling flatware for restoration. Welding these stamped (hardened) pieces back together will result in cracking on either side of the weld due to the flexing of the utensil. This is due to differences in grain structure of the stamped object and the welded filler wire. I recommend using a mini-torch and annealing the very edges of the break. Then file a v-groove on the backside of the break and use filler wire (e.g. sterling for a sterling fork) to fill the groove. This technique makes for a homogeneous connection.

5/5/2012: Argon Consumption

There are many things about the PUK I enjoy. One of those features is the very low argon consumption compared to other systems. I find that I can perform 99% of my welding using only 1.5 liters per minute (lpm).

5/5/2012: Sterling & Amber Ring

This is going to blow you away! A friend came to me with an amber and sterling ring. The amber was glued into the setting with decorative wires above, only 1/16" from the amber. As you can see below, the wires had come apart. So, I couldn't remove the stone, and was forced to weld the wires back together (I would have chosen to weld them regardless of whether or not the stone could be removed). If I had used a laser welder and missed the mark, the stone would have fried. But first, I wanted to try the technique I was about to use on a sterling jump ring surrounding a piece of plastic. It worked - no harm came to the plastic. Here's the procedure I used...

The wires were pried open and the silver solder removed.

The wires were then sprung back together. As a precaution, I slipped four layers of index card stock between the wires and the amber to prevent the stone from burning.

Below are the wires reattached with sterling filler wire. I used the filler setting with 1.5ms and 30% power.

4/16/2012: Sterling Box Cover

This box cover's four corners were all split. I used sterling filler wire on the inside and outside, then compacted the material from the outside to remove any porosity. What appears to be a corner split in the third image is actually a reflection

3/25/2012: Sterling Bracelet

This bracelet wasn't the thinnest piece I repaired with the PUK, but it did present a new issue: How would pulse arc welding hold up to constant bending?

This was the procedure I used:

The split was thoroughly cleaned, then beveled on the back side. I used .010" sterling filler wire and over-filled, spreading and smoothing material on either side of the break to strengthen the area. If I had not added additional support, I would see this piece back in my shop in a short time. I didn't totally compact the filler metal as it would have become too brittle with the possibility of the split re-opening. I decided to simply burnish the surface to remove any surface porosity. This left the filler material a bit more flexible.

12/30/2011: Sterling Casters

Someone had the clever idea to engrave these 1730 caster bodies with "salt" and "pepper." (The tops were left off to show a larger area of the engraving.) Engraving the function of these pieces is certainly not something I would have done, but to each his own. Since the silver was too thin to remove by filing, I used the PUK and sterling wire to fill it in. When I photographed the "after" image I had not yet polished the bottom sections of the casters.

12/11/2011: Sterling Cut Glass Jar Cover

This 5½" Wallace sterling cut glass jar cover was stamped and spun out of extremely thin material. The image on the left shows light coming through three areas of a flower as well as other areas on the piece. These areas were worn through from over polishing. The edges of the open spaces were the approximate thickness of a piece of tin foil (.001"). The PUK worked beautifully, and I used .25mm sterling wire for a perfect color match.

11/18/2011: Heat-sensitive Stones

Question from jeweler: I recently purchased a PUK Pro welder and am contemplating a retipping of a Tourmaline. I've completed several successful repairs upon Diamonds and Rubies but haven't worked on softer, heat-sensitive gems. Can you share any advice or point me in the direction of any technical material?

Answer: Tourmalines are inherently fragile stones. Having said this, there should be no problem rebuilding a prong. Firstly, it is advisable to try this technique on a practice setting holding a faceted glass "stone." Use 36-gauge annealed wire (.005") and the lowest possible power setting on your PUK when welding. Welding from the outside of the setting (don't let the electrode pass over the glass), build the prong straight up with the filler wire. When you're happy with the height of the prong, finish it and gently push it over the glass.

11/4/2011: Standard Sterling & Argentium

I did a comparison test using .030" (0.76mm) sheet standard sterling and Argentium. I used the gap mode with 6ms and 45% power for both alloys. The standard sterling (left) had smaller and slightly rougher welds than the Argentium, and demonstrated more oxide formation. The actual weld diameter sizes were .030" (0.76mm) for standard sterling, and .040" (1.02mm) for the Argentium. Dropping the power to 30% when welding the Argentium gave the same size diameter weld as the standard sterling.

Conclusion: Argentium gave a cleaner and smoother weld with 30% less power consumption as compared to standard sterling.

Standard sterling                                                                Argentium

11/2/2011: Pewter

Today I experimented with welding metals other than the sterling I normally work with. I cut some lead-free pewter sheet that was .040" (1.02mm). I filed the edges of each sheet 90 degrees to make a butt joint. I then used the PUK's gap filler mode with a setting of 6ms and 35% power, running down the center of the joint and overlapping each weld 50% I welded the top and bottom of the joint, with sheet penetration of over 50%. I then sawed through the joint and used 1200-grit silicon carbide paper to see if there were any gaps and found none. I folded the sheet on the joint in half from front to back, then back to front, and found no stress cracking. I continued the folding back and forth which eventually resulted in joint failure. This was because the joint was more brittle than the rest of the sheet. The same failure would have resulted if I had used pewter solder.

Since I was in an experimenting mood, I used the same PUK settings and welded the pewter to the aluminum backing of a safety edge blade with excellent results. The aluminum was then welded to the steel blade - this, too, was successful.


Two butt-welded pewter sheets (1.125" wide total)

10/15/2011: Gorham Sterling Match Safe (shown repairing the seam only)

The most tedious repair on this safe was closing the seam (or joint). The first order of business was to open the seam to remove any solder. Ultra-fine 0000 steel wool was used inside to remove any grime around the seam, making the surface smooth for burnishing.

Here I'm raising the seam past it's normal state, enabling greater access for scraping the seam walls.

This modified dental tool has a narrow triangular scraper on its end. It is used to remove all solder in the joint so the filler wire be welded to the clean sterling. Pulse arc and laser technologies will not fuse successfully to solder that previously melted. The filler metal will combine with the existing solder and produce a grainy alloy with a color that doesn't match the surrounding material.

Cleaning around the seam with a fine glass brush will aid in  successfully filling the joint.

The joint is now tapped closed using a rawhide mallet. There still exists a very slight taper from the bottom of the seam to the top, which will enable me to deposit sterling filler wire.

Here, a pulse arc welder is used to close the seam. This technology enables me to use .005"-.010" diameter sterling wire on this repair as opposed to brazing with hard silver solder. Silver soldering would have taken much longer:  fluxing the piece to prevent firestain, clean-up of the solder joint around the chased detail, and extensive repatination. Pulse arc welding localizes the heat and surrounds the weld area with argon gas. This gas totally eliminates oxides from forming in the sterling.

The joint after welding.

A rotary compactor is used to hammer down and compress the sterling wire that was used for the weld.

A fine rubberized abrasive wheel removes any compactor imperfections.

This is the result before repatinating. 


PUK 3s Professional

 
Video of welding the match safe above.

9/22/2011: Sterling Pie Server

This problem normally would require me to remove the plaster from the handle making sure it's perfectly clean before brazing. I would then have to go in with a scraper and clean around the split to guarantee a successful brazing job. Most handles I repair contain pitch which would have to be fully emptied so to not contaminate the joint (Arc welding and laser welding would have produced enough localized heat to melt the pitch, contaminating the seam.) For this handle, I experimented by removing only the plaster that was attached to the underside of the ragged split (approximately 2" in length) and left the remaining plaster in the handle. Also, I didn't remove the solder from the seam - arc welding and laser welding technology normally wreak havoc when working with solders, but I was curious to see if the PUK would give me a different outcome. I cut a piece of annealed .005" sterling sheet and used it as a shim in the split, exposing about a 1/16" above and below the surface. I then clamped the two sides together and began welding using the PUK's gap filler mode. Positioning the electrode on the top edge of the shim, I was able to melt and "push" the sterling down into the split, successfully filling the most of the void. This process is completed within milliseconds. I then used .010" annealed sterling wire to fill any remaining voids. The end result displayed absolutely no porosity and was  undetectable. There was no firescale or firestain to remove, no patina to be reapplied, and a seam that would never split again.


Avoiding Pain When Welding for Long Periods
Les Hubert, Licensed Massage Therapist

The job of a silversmith or any other metal worker demands precision. And this comes with a price if the artisan's hands and arms are called in to provide that precision. With the cooperation of silversmith Jeff Herman, I was able to observe just such an occasion. Jeff informed me that he had been experiencing forearm pain and that this occurred during and after intense concentration with the use of a pulse arc welder. In order to use this device correctly, one has to hold the object being worked on prolonged periods with micro movements. In the following photo, the red ellipse indicates where his pain is located. This pain is caused by a condition called lateral epicondylitis, commonly referred to as tennis elbow.

In this particular case Jeff is asking his muscles to make constant micro movements, where they are at a disadvantage after prolonged periods. Muscles need to adequately contract and elongate in order to pump out fuel waste and bring in fresh fuel. When they are unable to do this, lactic acid builds up in the muscles and connective tissues, creating micro tears. To illustrate, imagine an elastic band that has been burned. Instead of elongating when stretched, its fibers will simply separate and tear.

Below is a video of welding a large object illustrating micro movements of the arm.

With this condition of tennis elbow, one can also find pain leading to the thumb because of the radial nerve that lives in the area between the larger extensor muscles of the forearm (see diagram).

Treatment Suggestions

If you are already having problems with these areas, I suggest getting treatment with a licensed professional such as a massage or muscular therapist or physical therapist as soon as possible. If that's not possible in the immediate future, then ice should be applied to the affected area for at least 20 minutes (see photo to right).

Then remove the ice and move the forearm slowly in a circular motion (demonstrated in the video below) for one minute. Repeat this process two more times.

Cryotherapy or ice therapy can quickly help control swelling and pain. Combined with movement it can aid in removing some of the scar tissue in the affected area, thus allowing the body to replace the scar tissue with new and healthy fibers.

How to Avoid this Condition

When your work demands a steady hand, give yourself plenty of stretch breaks. Every half hour isn't a bad idea. Try mildly ringing out a towel, raising and lowering a weight (I used a sledge hammer that has a hanging hole in the handle), or squeezing a soft ball to aid in lactic acid release.

Try to keep in mind that your body has limits of endurance. It's an incredibly complex and beautiful organism.  With your help, as with any tool, if properly maintained, it will continue to serve you well for many years.

Les Hubert is a licensed massage therapist for Michael K. Galvin & Gel Essentials in Cranston, RI.

Back to ShopTalk
Back to Home Page

drupal analytics